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Abstract. The predominant learning strategy for H(S)MMs is local search heuris-
tics, of which the Baum-Welch/ expectation maximization (EM) algorithm is
mostly used. It is an iterative learning procedure starting with a predefined topol-
ogy and randomly-chosen initial parameters. However, state-of-the-art approaches
based on arbitrarily defined state numbers and parameters can cause the risk of
falling into a local optima and a low convergence speed with enormous num-
ber of iterations in learning which is computationally expensive. For models with
persistent states, i.e. states with high self-transition probabilities, we propose a
segmentation-based identification approach used as a pre-identification step to ap-
proximately estimate parameters based on segmentation and clustering techniques.
The identified parameters serve as input of the Baum-Welch algorithm. Moreover,
the proposed approach identifies automatically the state numbers. Experimental re-
sults conducted on both synthetic and real data show that the segmentation-based
identification approach can identify H(S)MMs more accurately and faster than the
current Baum-Welch algorithm.
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1. Introduction

Hidden Markov Models (HMMs) [1] and its extension hidden semi-Markov Models
(HSMMs) [2] are one of the statistical modeling tools with great success and widely used
in a vast range of application fields such as audio-visual speech processing [3], machine
maintenance [4], acoustics [5], biosciences [6], handwriting and text recognition [7] and
image processing [8].

Classical iterative approaches (e.g., the Baum-Welch algorithm [9,10] and the gradi-
ent descent algorithm[11]) are the most commonly used methods when one wants to es-
timate H(S)MM parameters. However, they require a predefined number of states, which
does not necessarily match the real life cases. In spite of this limitation, classical iterative
approaches are still widely used to estimate H(S)MM parameters, for lack of alternatives.
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The careless adoption of a previously known model state numbers may give misleading
results. In order to solve this problem, state-of-the-art approaches decide an optimal state
number either using specific criteria (e.g., the Akaike information criterion (AIC) [12],
the Bayesian Information Criterion (BIC) [13]), or by structure evolving methods (e.g.,
the state splitting/ merging approach [14], the genetic approach [15]). However, learning
H(S)MMs iteratively using the heuristic approaches above is computationally hard and
often produces local optima issues. With respect to this problem, Hsu et al. [16] introduce
a spectral-based algorithm for learning HMMs, which employs only a singular value de-
composition and matrix multiplications, nonetheless, makes restrictive and problematic
assumptions that the transition and emission matrices are full rank and the initial state
vector is positive in all coordinates.

In this paper, we address the problem of model initializations and focus on models
with persistent states (i.e., “sticky transitions”). Fox et al. [17] propose a sticky HDP-
HMM which is a non-parametric, infinite-state model that automatically learns the size of
state spaces and the smoothly varying dynamics robustly. However, this approach is com-
putationally prohibitive when data sets are very large [18]. In this paper, a segmentation-
based identification approach is proposed for models with persistent states, based on the
segmentation of the observed data. Specifically, a pre-estimation step is conducted to de-
cide the number of states and the initial model parameters approximately. This approx-
imate estimation is served as an effective starting point of the Baum-Welch algorithm
which refines the initial parameters. Consequently, both the number of iterations needed
and the chance of falling into a local optimum are reduced. The improvements in ef-
fectiveness and efficiency of the proposed approach are confirmed experimentally using
both simulated and real data.

The remainder of the paper is organized as follows: in Section 2, the preliminaries
about HMMs and HSMMs are briefly reviewed, followed by the classifications of hidden
states. Section 3 discusses the methodology of the proposed method. Experiments con-
ducted on both synthetic and real data are described and discussed in Section 4. Finally,
conclusions are given in Section 5.

2. Preliminaries

An HMM [1] is a doubly stochastic process where the underlying process is charac-
terized by a Markov chain and unobservable (hidden) but can be observed through an-
other stochastic process which emits the sequence of observations. Let N denote the
number of states and M the number of observation symbols. Let S = {s1,s2, . . . ,sN} and
O = {v1,v2, . . . ,vM} denote the set of states and the set of observations, respectively.
Using qt to represent the state and ot the observation at time t, an HMM model can be
characterized as below with the notation in [1]: the state transition probability matrix is
A = {ai j}, where

ai j = P(qt+1 = s j|qt = si),1 ≤ i, j ≤ N (1)

The observation probability matrix is B = {b j(k)}, where

b j(k) = P(ot = vk|qt = s j),1 ≤ j ≤ N,1 ≤ k ≤ M (2)
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The initial state probability distribution

πi = P(q1 = si),1 ≤ i ≤ N (3)

where si ∈ S. An HMM can be expressed with the abbreviation λ = (π,A,B). An exam-
ple is shown in Figure 1a.

(a) An HMM (b) An HSMM

Figure 1. Example of an HMM and an HSMM

Hidden semi-Markov model (HSMMs) [2] is an extension of the HMMs, of which
the underlying stochastic process is a semi-Markov chain instead of a Markov chain
as in the HMMs. Each state has an explicit state duration variable d, which is associ-
ated the number of observations being emitted while in the state [2]. Let D denote the
maximum allowed duration in a state and the state duration set as D = {1,2, . . . ,D}.
For each observation sequence o1:T , the corresponding state sequence is denoted as
s[1:d1] = i1,s[d1+1:d1+d2] = i2, . . . ,s[d1+···+dn−1+1:d1+···+dn] = in and the state transitions are
(im,dm) → (im+1,dm+1), for m = 1, . . . ,n − 1, where ∑n

m=1 dm = T, i1, . . . , in ∈ S and
d1, . . . ,dn ∈ D. The state transition probability is defined as

a(i,d′)( j,d) = P(s[t+1:t+d] = j|s[t−d′+1:t] = i) (4)

subject to ∑ j∈S\{i} ∑d∈D a(i,d′)( j,d) = 1 with zero self-transition probabilities a(i,d′)( j,d) =
0, where i, j ∈ S and d,d′ ∈ D. The observation probability of d observations ot+1:t+d
being emitted in state j can be written as

b j,d(ot+1:t+d) = P(o[t+1:t+d]|s[t+1:t+d] = j) (5)

The initial state probability is denoted by

π j,d = P(s[t−d+1:t] = j), t ≤ 0,d ∈ D. (6)

An HSMM can be abbreviated by λ = (a(i,d′)( j,d),b j,d(vk1:kd ),πi,d), where i, j ∈ S,d,d′ ∈
D, and vk1:kd represents vk1 , . . . ,vkd ∈ O×·· ·×O. An example is shown in Figure 1b.

A persistent state is a state with a high self-transition probability, i.e. the rate of
remaining at the same state is high while the rates of going to other states are low. A
transient state, on the other hand, is very likely to move to other states instead of staying
at the same state. Hence the self-transition probability aii of state i,1 ≤ i ≤ N is used as
an indicator to distinguish between persistent and transient state, i.e. if aii > 1/N, it is
persistent, otherwise transient. This paper focuses on H(S)MMs with persistent states.
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Segmentation-based process

Signal Step 2: Combination of states Baum-Welch
Learning

X

Step 1: Identification of persistent states

Step 3: Estimation of state numbers

Step 4: Calculation of initial parameters

Figure 2. Scheme of the proposed approach

3. Methodology of model identification

The application we will consider is industrial machinery system maintenance which is
suitable of being modeled with persistent-state H(S)MMs. As stated in [19], the reason
of using H(S)MMs in machine maintenance and decision making is that machine oper-
ation condition can be classified into a number of meaningful states, such as “Good”,
“OK”, “Minor defects only”, “Maintenance required”, “Unserviceable”, so that the state
definition is closer to what is used in industry and thus easy to interpret. As states deter-
mine the behavior of a system, persistence of states implies that the system will exhibit
the same behavior for a certain period. Such period is called a regime, i.e., a time period
in which the state of the system does not change, meaning the observation probabilities
are constant. The assumption of state persistence is reasonable in industrial machinery
systems since machine condition opt to stay in a stable and persistent state for a certain
period before jumping to another state if nothing goes wrong. For instance, a machine in
a “Good” condition at the current time is more likely to remain “Good” at the next time
step instead of going into an “OK” condition unless the machine already degrades over
a certain time period (i.e., a regime). Our algorithm is based on identifying the regimes
of a state through segmentation and clustering.

The segmentation-based identification approach contains four steps: firstly, signals
are split into different regimes based on different signal behaviors. Secondly, the ‘sim-
ilar’ regimes of signal are grouped together by clustering techniques according to their
similarities. The achieved labeled regimes are assumed to correspond to hidden states.
Thirdly, a clustering validation index is employed to determine the number of states.
Finally, H(S)MM parameters are estimated by calculating statistical occurrences of the
observed signal and the estimated hidden states, then used as initial input of the standard
Baum-Welch algorithm. The scheme of the methodology is shown in Fig. 2.

3.1. Step 1: Identification of persistent states by segmentation

Data sequences emitted by persistent states can be segmented into sub-sequences with
constant behavior (observations are drawn from a stationary distribution). The transition
from one state to another can be identified by detecting a difference in signal behavior.
This is called a change-point. In this paper, we propose a sliding window-based Bayesian
segmentation for splitting discrete signals by employing the test of [20]. The test calcu-
lates the Bayesian probability that two sequences have been generated by the same or
by a different multinomial model. The first sequence always starts from the last change
point (the first point if at the beginning) and ends at the current time point; the second
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sequence is a fixed-length sliding-window starting from the next time point. If the test
indicates that it is very likely (with a confidence level, for example 90%) that the two
sequences are from a different model, the current time point is marked as a change point.
The procedure repeats until the end of the signal. An example is shown in Figure 3.

Time0

Last change-point

Seq 1 Seq 2

…

Sliding window

…

Current time

time = t
time = t+1
time = t+2

…

Figure 3. Sliding-window based segmentation

3.2. Step 2: Combination of states by clustering

Regimes corresponding to the same states will recur over time. Assuming there is a finite
number of states, segments with the same states are detected and clustered together. In
this study, the classical k-means clustering approach [21,22] is used to combine and label
each segment, described as below: 1) feature points are obtained by averaging the data in
each segment; 2) the feature points are divided into k subsequences with equal length; 3)
the median values of each subsequence are used as initial starting centroids for k means
clustering. Notably, 2) and 3) are the preliminary steps designed to avoid the problem of
randomness in initializations of k-means clustering.

3.3. Step 3: Estimation of state numbers by cluster validity

In order to select the optimal number of clusters, a robust index, called Davies-Bouldin
index (DBI) [23], is applied in this paper.

Suppose dataset X is partitioned into K disjoint non-empty clusters Ci and let
{C1,C2, . . . ,CK} denote the obtained partitions, such that Ci ∩Cj = Ø (empty set),
i �= j,Ci �= Ø and X =

⋃K
i=1 Ci. The Davies-Bouldin index [23] is defined as:

DBI =
1
K

K

∑
i=1

max
i�= j

{diam(Ci)+diam(Cj)

dist(Ci,Cj)
} (7)

where diam(Ci) = max
xm,xn∈Ci

{d(xm,xn)} and dist(Ci,Cj) = min
xm∈Ci,xn∈Cj ,i�= j

{d(xm,xn)} de-

note the intra-cluster diameter and the inter-cluster distance, respectively. Apparently, the
partition with the minimum Davies-Bouldin index is considered as the optimal choice.

3.4. Step 4: Estimation of initial parameters

The underlying assumption of our method is that segmentation of the observed signal
allows us to identify quite accurately the regimes of the true model. If the regimes be-
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longing to the same state are grouped correctly, these regimes offer us good insight into
the behavior of the states, i.e. the observation and transition probabilities as well as the
duration distribution. The probabilities are estimated based on the observed frequencies.

Parameters of an HMM (i.e., probability matrices) can be calculated by simple
counting the occurrence of the observed signal and the hidden states (i.e., labels retrieved
from clustering), which are computed as below [1,9,10]:

π̄i = frequency in state si at time t = 1 (8)

āi j =
# of trans. from si to s j

# of trans. from si
(9)

b̄ j(k) =
# of times in s j observing vk

# of times in s j
(10)

where trans. is the abbreviation for transition. Note that Baum-Welch uses the same
equations in (re)-estimating model parameters. Similarly, the parameters of an HSMM
can be computed as below:

π̄i,d = frequency in state si at time t = 1, with dur. d (11)

ā(i,d′)( j,d) =
# of trans. from si with dur. d′ to s j with dur. d

# of trans. from si with dur. d′ (12)

b̄ j,d(ot+1:t+d) =
# of times ot+1:t+d emitted in s j

# of times in s j
(13)

where dur. is the abbreviation for duration. The distribution of the duration d for each
state can be calculated by the kernel density estimation (KDE) based on a normal kernel
function [24,25]:

f̄h(d) =
1
γh

γ

∑
i=1

KN(
d −di

h
) (14)

where (d1,d2, . . . ,dγ) is a duration sample drawn from a distribution with density f , KN
represents a normal kernel and h is bandwidth for the smoothing purpose, which is set as
the optimal for normal densities.

4. Experimental Validation

Experiments on both synthetic and real case datasets are performed to evaluate the accu-
racy and efficiency of the proposed method.
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4.1. Synthetic datasets

Simulated datasets are generated by 50 randomly created persistent-state HMMs with
number of states Q (from 2 to 6), number of observations O (from 2 to 6), each combi-
nation of Q and O is repeated 2 times. Each HMM is served as a reference model and
then used to generate a dataset with 4000 samples (20× 200, number of observation
sequences × length of sequence). The first 4/5 observation sequences are selected as
training samples and the remaining 1/5 are used as test samples. Similar parameters are
set for HSMMs with a maximum duration of D = 30 and datasets are generated with
T = 1000 time steps. To identify each reference model, we train the model with both
the proposed method and the standard Baum-Welch approach for comparisons. The state
numbers are selected from a state pool of [2,2Q] by the Baum-Welch with the AIC crite-
rion [12], and the proposed method with DBI cluster validation, respectively. As a result,
2Q−1 times of the BW learning is required for each learning task. On the contrary, the
proposed method starts with a pre-learned initial parameters, hence requires only 1 time.
In the segmentation step of the proposed method, the window size and the confidence
level can be adjusted according to different applications, which here are set to 20 and 0.9
empirically.

The comparisons are conducted on two aspects: learning accuracy and speed. The
accuracy in model identification is evaluated by comparing the log-likelihoods (LL) dif-
ference with the reference model on test samples. The LL of the observation o1:T given
the model λ measures how well the model fits the data (log(P(o1:T |λ )) . If the difference
between the likelihoods is below a certain threshold (5% in this paper), the model is con-
sidered as correctly learned; otherwise the learned model is assumed to be trapped in a
local optimum. The learning speed is compared on the total time of learning (measured
in seconds) and the number of iterations to converge.

Table 1. Performance on synthetic data for standard Baum-Welch algorithm and proposed method

Models HMM HSMM

Criteria Random
BW + AIC

Proposed
method

Random
BW + AIC

Proposed
method

Accuracy
Test-set LL difference (%) 18.7 2.6 46.27 39.37

Test-set local optima (%) 39.4 14.0 90.20 72.00

Speed
Average learning time (sec-
onds)

13.32 2.62 2.44 1.55

Average number of iterations
(#)

25.94 8.70 4.32 5.56

Experiment results in Table 1 show an obvious improvement of the proposed method
compared to the Baum-Welch algorithm for HMMs: the model distance with the refer-
ence model and the number of local optima are lowered and with a faster learning speed
and fewer number of iterations to converge. For the HSMMs, improvements can be seen
marginally.
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4.2. Bearing dataset

The proposed method is applied to a bearing dataset for machine maintenance provided
by the POM project2. The set-up consists of steel cord production machines located in
the production plant in China. These machines were continuously monitored for bearing
degradation using accelerometers and temperature sensors. The temperature are logged
regularly by the temperature sensors on both sides, i.e., ‘input’ and ‘output’ side. A
temperature overshoot protection is implemented in the machine’s controllers in order
to avoid catastrophic failures of bearings. When temperature exceeds the temperature
threshold for more than predefined observation time, the machine stops and restarts when
the temperature decreases below the temperature threshold.

The temperature evolution is predicted by one of the POM project partners in a
run-by-run way, on which regression is applied taking context feature into account by
Dynamic Time Warping. However, each run is learned separately without considering the
run-dependence. To address this issue, we use the H(S)MM models to study the dynamic
nature and correct the prediction errors of the regression method by the inferred model.
In the experiment, the dataset is the prediction errors of the ‘input’ temperature signal
from one of the machines at the end of each run, which contains 3160 data points. The
state number selection of the BW and the proposed methods is conducted on a state pool
of [2, 8] via the AIC criterion and the DBI index, respectively. To lower the side affect
of the randomness in the BW initialization, the learning is repeated 5 times for the BW
and the averaged performance is used to compare with the proposed method.

Figure 4a shows the learning results of the proposed method: segmentation via
change-point detection (above) and the labeled hidden states by the K-means cluster-
ing (below). The clustering validation by the DBI index is shown in Figure 4b of which
the one with 8 clusters (states) with the minimum DBI value is selected as an optimal
choice. Results suggest the feasibility of combining the states with ‘similar’ behaviors
by clustering. Performances of both approaches are shown in Table 2. The averaged log-

(a) (b)

Figure 4. Pre-estimation results of the proposed method. (a) Segmentation via change-point detection and
labeling via clustering. (b) The DBI indexes.

likelihood values of the Baum-Welch method are lower and the speed is dramatically

2www.pom-sbo.org

T. Liu and J. Lemeire / Effective and Efficient Identification of Persistent-State HSMMs178



Table 2. Comparisons of the average learning performance over repetitions on the bearing data

Models HMM HSMM

Criteria
Random BW
+ AIC

Proposed
method

Random BW
+ AIC

Proposed
method

Number of states 8 8 7 8

Average log-likelihood -2.0284 -2.0175 -2.0523 -2.0149

Average learning time
(seconds)

205.3406 9.0711 163.6585 7.1672

slowed down compared to the proposed method. The reasons for the speed gain are ex-
plicit: both methods select the state numbers from a state pool from 2 to 8. However, the
proposed method uses a clustering validation index with only one run of Baum-Welch
learning, instead of 7 runs for the traditional BW method; moreover, even the average
duration of runs in traditional BW, is still much longer than proposed method, because a
rather ‘accurate’ initialization of the proposed method requires not only fewer iterations,
but also less time to converge.

5. Conclusions

This paper introduces an extension to the current algorithm for H(S)MMs identification
based on segmentation and clustering techniques. Both state number selection and pa-
rameters initialization are addressed. Enhancement in the accuracy of H(S)MMs iden-
tification and the learning converge speed are achieved through the development of a
pre-estimation step which avoids the local optimal problem. The effectiveness and effi-
ciency of the proposed method are confirmed through experiments on both synthetic and
real signals. Future work will improve the proposed method and extend it to more types
of models (e.g., the ones with non-persistent states), as well as consider an application
difference for a better quantification of the model parameters estimation.
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